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Orbitwise Countings in H(2) and Quasimodular Forms

Samuel Lelièvre and Emmanuel Royer

We prove formulae for the countings by orbit of square-tiled surfaces of genus two with

one singularity. These formulae were conjectured by Hubert and Lelièvre. We show that

these countings admit quasimodular forms as generating functions.

1 Introduction

The main result of this paper is the proof of a conjecture of Hubert and Lelièvre.

Theorem 1.1. For odd n, the countings by orbit of primitive square-tiled surfaces of the

stratum H(2) tiled with n squares are the following. Orbit An contains

ap
n =

3

16
(n − 1)n2

∏

p|n

(
1 −

1

p2

)
(1.1)

primitive surfaces with n squares and orbit Bn contains

bp
n =

3

16
(n − 3)n2

∏

p|n

(
1 −

1

p2

)
(1.2)

primitive surfaces with n ≥ 3 squares and 0 for n = 1 square. �

Remark 1.2. The notation
∏

p|n indicates a product over prime divisors of n. The super-

script p is here to emphasize primitivity.
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Theorem 1.1 can also be expressed in terms of quasimodularity of the generating

functions of the countings. More precisely, we have the following.

Corollary 1.3. For any odd positive integer n, the number an of n-square-tiled surfaces

of type A in H(2), primitive or not, is the nth coefficient of the quasimodular form

+∞∑

n=0

an exp(2iπnz) =
1

1280

[
E4(z) + 10

d

2iπ dz
E2(z)

]
(1.3)

of weight 4 and depth 2 on SL(2, Z). �

Remark 1.4. The functions E2 and E4 are the usual Eisenstein series of weights 2 and 4,

respectively. They are defined in (4.2) and (4.26).

Since the coefficients an have no geometric meaning for even n, it makes sense to

consider only the odd part of the Fourier series. Considering the odd part is the same as

considering the Fourier series twisted by a Dirichlet character of modulus 2 (see Section

4.4). It is then natural to expect that, similarly to the case of modular forms (see [7, The-

orem 7.4]), the odd part of the Fourier series is a quasimodular form on the congruence

subgroup Γ0(4). Actually, we will prove this is the case. Let Φ2 and Φ4 be the two modular

forms of respective weights 2 and 4, defined on Γ0(4) as in (4.27).

Theorem 1.5. The Fourier series

∑

n∈2Z≥0+1

an exp(2iπnz) (1.4)

is the quasimodular form of weight 4 and depth 1 on Γ0(4) defined by

1

1280

[
E4(z) − 9E4(2z) + 8E4(4z) − 15

d

2iπ dz
Φ2(z) + 15

d

2iπ dz
Φ4(z)

]
. (1.5)

�

Remark 1.6. This theorem will be proved in Section 6. It is interesting to note that for-

getting the artificial terms of even order results in a lesser depth, that is, in a simplified

modular situation. (A modular form is a quasimodular form of depth 0, so the depth may

be seen as a measure of complexity.)

Table 1.1 gives the first few values of a
p
n and an.

Our results may be interpreted in terms of counting genus 2 covers of the torus

T = C/Z + iZ with one double ramification point (see Section 2). The general problem

of counting covers with fixed ramification type of a given Riemann surface was posed in

1891 by Hurwitz who precisely counted the covers of the sphere. Dijkgraaf [2] computed
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Table 1.1 Number of surfaces of type A.

n 5 7 9 11 13 15 17 19 21 23 25 27

ap
n 18 54 108 225 378 504 864 1215 1440 2178 2700 3159

an 18 54 120 225 378 594 864 1215 1680 2178 2808 3630

the generating series of the countings of degree n and genus g covers of T with simple

ramification over distinct points, weighted by the inverse of the number of automor-

phisms. Kaneko and Zagier [9] introduced the notion of quasimodular forms and proved

that the generating series computed by Dijkgraaf was quasimodular of weight 6g − 6 on

SL(2, Z). The case of arbitrary ramification over a single point was studied by Bloch and

Okounkov [1]. They proved that the countings lead to linear combinations of quasimodu-

lar forms of weight less than or equal to 6g − 6. This was used by Eskin and Okounkov [4]

to compute volumes of the strata of moduli spaces of translation surfaces (see also [15]).

The SL(2, Z) orbits of square-tiled surfaces were studied by Hubert and Lelièvre in the

case of a prime number of squares [6] and by McMullen [12] in the general case.

Up to a multiplicative constant factor, our counting functions are the orbifold

Euler characteristics of Teichmüller curves. Matt Bainbridge independently obtained re-

sults similar to ours in this setting.

The moduli space of holomorphic 1-forms on complex curves of a fixed genus g

can be considered as a family of flat structures of a special type on a surface of genus

g. The group GL(2, R) acts naturally on the moduli space; its orbits, called Teichmüller

discs, project to the moduli space of curves as complex geodesics for the Teichmüller

metric. A typical flat surface has no symmetry; its stabilizer in GL(2, R) is trivial; the cor-

responding Teichmüller disc is dense in the moduli space. For some flat surfaces (called

Veech surfaces) the stabiliser is big (a lattice) so that the corresponding Teichmüller disc

is closed. Projections of such Teichmüller discs, called Teichmüller curves, play the role

of “closed complex geodesics.”

The main lines of the proof of Theorem 1.1 are the following. In Section 3, we

evaluate the number a
p
n in terms of sums over sets defined by complicated arithmetic

conditions. In Section 5, we relate these coefficients a
p
n to sums of sums of divisors of the

form

∑

(a,b)∈Z
2
>0

ka+b=n

σ1(a)σ1(b). (1.6)

For the computation of these sums, we use, in Section 4, the notion of quasimodular

forms on congruence subgroups (introduced by Kaneko and Zagier in [9]) and we take
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Figure 2.1 Surface with one angle of 6π.

advantage of the fact that the spaces of quasimodular forms have finite dimension to

linearise the above sums. Here, linearising means expressing them as linear combina-

tions of sums of powers of divisors. Having obtained a series whose odd coefficients are

the numbers an, we introduce the notion of twist of a quasimodular form by a Dirich-

let character, to construct a new quasimodular form generating series without artificial

Fourier coefficients.

2 Geometric background

2.1 Square-tiled surfaces

A square-tiled surface is a collection of unit squares endowed with identifications of op-

posite sides: each top side is identified to a bottom side and each right side is identified to

a left side. In addition, the resulting surface is required to be connected. A square-tiled

surface tiled by n squares is also a degree n (connected) branched cover of the standard

torus C/Z + iZ with a single branch point.

Given a square-tiled surface, to each vertex can be associated an angle which is

a multiple of 2π (four or a multiple of four squares can abutt at each vertex). If (ki + 1)2π

is the angle at vertex i, the Gauss-Bonnet formula implies that

s∑

i=1

ki = 2g − 2, (2.1)

where g is the genus of the surface and s the total number of vertices.

Figure 2.1 shows a surface where one vertex has angle 6π (and two other vertices

have angle 2π).

Surfaces can be sorted according to strata H(k1, . . . , ks). Square-tiled surfaces

are integer points of these strata. In this paper, we are concerned with surfaces in H(2),
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Figure 2.2 Decomposition of a surface into two cylinders.

that is, with a single ramification point of angle 6π. A surface tiled by n squares in H(2)

is a degree n branched cover of the torus C/Z + iZ with one double ramification point.

2.2 Cylinder decompositions

Given any square-tiled surface, each horizontal line on the surface through the interior

of a square is closed, and neighbouring horizontal lines are also closed. Thus closed hor-

izontal lines come in families forming cylinders and the surface decomposes into such

cylinders bounded by horizontal saddle connections (segments joining conical singular-

ities). This is illustrated in Figure 2.2.

Here we explain how to enumerate square-tiled surfaces in H(2) with a given

number of squares, by giving a system of coordinates for them. We include this discus-

sion for the sake of completeness, although these coordinates have already been used in

[3, 6, 15].

We represent surfaces according to their cylinder decompositions. Cylinders of a

square-tiled surface are naturally represented as rectangles. One can cut a triangle from

one side of such a rectangle and glue it back on the other side according to the identi-

fications to produce a parallelogram with a pair of horizontal sides (each made of one

or several saddle connections), and a pair of identified nonhorizontal parallel sides. A

square-tiled surface in H(2) has one or two cylinders [15] and can always be represented

as in Figure 2.3 or 2.4. Each cylinder has a height and a width and in addition a twist

parameter corresponding to the possibility of rotating the saddle connections of the top

or bottom of the cylinders before performing the identifications.



6 S. Lelièvre and E. Royer

t �3 �2 �1

h

�1 �2 �3

Figure 2.3 One-cylinder surface.

2.3 One-cylinder surfaces

For one-cylinder surfaces in H(2), we have on the bottom of the cylinder three horizontal

saddle connections, and the same saddle connections appear on the top of the cylinder

in reverse order; we denote by � the width of the cylinder and �1, �2, �3 the lengths of the

saddle connections, numbered so that they appear in that order on the bottom side and

in reverse order on the top side. See Figure 2.3.

For each choice of (�1, �2, �3) with �1 + �2 + �3 = �, if �1, �2, �3 are not all equal,

there are � possible values of the twist t giving different surfaces. But, the three possible

cyclic permutations of (�1, �2, �3) yield the same set of surfaces. So, to make coordinates

uniquely defined, we require that (�1, �2, �3) has least lexicographic order among its cyclic

permutations. For countings, it is simpler to ignore this point and to divide by 3 at the

end.

If �1, �2, �3 are all equal (and thus worth �/3), there is only one cyclic permutation

of (�1, �2, �3) but only �/3 values of the twist t give different surfaces.

The parameters we have used satisfy

� | n,

�1 + �2 + �3 = �,

0 ≤ t < � or
�

3
.

(2.2)

Remark 2.1. From this description of coordinates, we conclude that the number of one-

cylinder surfaces in H(2) tiled with n squares is (see [3])

1

3

∑

�|n

∑

(�1,�2,�3)∈Z
3
>0

�1+�2+�3=�

�. (2.3)

2.4 Two-cylinder surfaces

Given a two-cylinder surface in H(2), one of its cylinders (call it cylinder 1) has one sad-

dle connection on the top and one saddle connection (of same length) on the bottom,
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t1 u1

t2 h1

u2

h2

Figure 2.4 Two-cylinder surface.

while the other one (call it cylinder 2) is bounded by two saddle connections on the top

and two saddle connections on the bottom. See Figure 2.4.

For each of cylinders 1 and 2, there are three parameters: the height hi, the width

ui, and the twist ti.

Given two heights h1 and h2, two widths u1 < u2, and two twists t1, t2 with 0 ≤
ti<ui, there exists a unique surface in H(2) with two cylinders having (h1, h2, u1, u2, t1, t2)

as parameters. The number of squares is then h1u1 + h2u2.

Remark 2.2. From this system of coordinates one deduces (see [3]) that the number of

two-cylinder surfaces in H(2) tiled by n squares is

∑

(h1,h2,u1,u2)∈Z
4
>0

u1<u2
h1u1+h2u2=n

u1u2.

(2.4)

2.5 Lattice of periods

The lattice of periods of a square-tiled surface is the rank two sublattice of Z
2 generated

by its saddle connections.

Lemma 2.3. A square-tiled surface is translation-tiled by a parallelogram if and only if

this parallelogram is a fundamental domain for a lattice containing the surface’s lattice

of periods. �

Proof. Decompose the surface into polygons with vertices at the conical singularities.

The sides of these polygons are saddle connections and together generate the lattice of

periods. The tiling of the plane by parallelograms which are a fundamental domain for

this lattice (or any rank two lattice of the plane containing it) yields a tiling of the trans-

lation surface by such parallelograms. �
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Remark 2.4. The previous lemma implies that the area of the lattice of periods divides

the area of the surface it comes from.

We will use a basis of the lattice of periods given by the following lemma [14,

Chapter 7].

Lemma 2.5. Let Λ be a sublattice of Z+ iZ of index d. Then there exists a unique triple of

integers (a, t, h) with a ≥ 1, ah = d, and 0 ≤ t ≤ a − 1 such that

Λ = (a, 0)Z ⊕ (t, h)Z. (2.5)
�

Remark 2.6. Let S be a square-tiled surface in H(2), and let
(

a t
0 h

)
be the matrix corre-

sponding to its lattice of periods. If S is one-cylinder, then h is the height of its unique

cylinder; if S is two-cylinder, with cylinders of height h1 and h2, then h = (h1, h2).

Definition 2.7. A square-tiled surface is called primitive if its lattice of periods is Z
2, in

other words if
(

a t
0 h

)
=
(

1 0
0 1

)
.

Definition 2.8. A square-tiled surface is called primitive in height if h = 1.

The linear action of GL(2, Q)+ on R
2 induces an action of GL(2, Q)+ on square-

tiled surfaces. This action preserves orientation. The action of SL(2, Z) preserves the

number of square tiles, and preserves primitivity.

Hubert and Lelièvre have shown that if n ≥ 5 is prime, the square-tiled surfaces

in H(2) tiled with n squares (necessarily primitive since n is prime) form two orbits un-

der SL(2, Z), denoted by An and Bn.

If n is not prime and n ≥ 6, not all surfaces tiled by n squares are primitive,

and if n has many divisors, these surfaces split into many orbits under SL(2, Z), most

of them lying in orbits under GL(2, Q)+ of primitive square-tiled surfaces with fewer

squares. There can be an arbitrary number of such “artificial” SL(2, Z)-orbits. Artificial

orbits consist only of nonprimitive square-tiled surfaces, since the action of SL(2, Z) pre-

serves primitivity.

Let n be an odd integer. We can distinguish two types of surfaces among surfaces

tiled by n squares in H(2). These two types are distinguished by Weierstrass points, as

follows (see [6]).

On a surface in H(2), the matrix
(

−1 0
0 −1

)
induces an involution which can be shown

to have six fix points, called the Weierstrass points of the surface. It is easy to show that

for a square-tiled surface these points have coordinates in (1/2)Z. The type invariant

is determined by the number of Weierstrass points which have both their coordinates
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integer:

(i) a surface is of type A if it has one integer Weierstrass point;

(ii) a surface is of type B if it has three integer Weierstrass points.

Remark 2.9. We give an interpretation in terms of orbits. Consider the orbit under

GL(2, Q)+ of a surface S tiled by n squares. Then

(i) the primitive square-tiled surfaces in this orbit all have the same number of

squares, say d;

(ii) the action of GL(2, Q)+ restricts to an action of SL(2, Z) on these primitive

square-tiled surfaces;

(iii) these primitive surfaces form an orbit under SL(2, Z);

(iv) McMullen extended the result of Hubert and Lelièvre by showing that if d ≥
5 is odd, the set of primitive square-tiled surfaces in H(2) tiled with d

squares is partitioned in two orbits under SL(2, Z) denoted by Ad and Bd;

(v) the type can be read on these primitive square-tiled surfaces.

3 Sum-type formulae for the orbitwise countings

3.1 From primitive to nonprimitive countings

In this section, we establish relations between countings of primitive surfaces, count-

ings of height-primitive surfaces, and countings of (non-necessarily primitive) surfaces.

For any integer �, the function σ� is defined by

σ�(n) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

d|n

d� if n ∈ Z>0,

0 otherwise.

(3.1)

For n ∈ Z>0, define En as the set of surfaces in H(2) tiled by n squares, E
p
n as

its subset of primitive surfaces, and E
ph
n as its subset of primitive in height surfaces. For

d ∈ Z>0, denote Λd the set of sublattices of Z + iZ of index d. The description of surfaces

by primitive surfaces is given by the following lemma.

Lemma 3.1. For n ∈ Z>0, the following bijection holds:

En �
⋃
d|n

E
p
n/d × Λd. (3.2)

�

Proof. Let S ∈ En and let d be the index in Z+ iZ of its lattice of periods Per(S). Then d | n

and Per(S) ∈ Λd. With the notations of Lemma 2.5, we write Per(S) = (a, 0)Z ⊕ (t, h)Z. To
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S we associate a surface tiled by n/d squares:

S ′ =

(
a t

0 h

)−1

S. (3.3)

The lattice of periods of S ′ is Z + iZ so that it is primitive. Conversely, let S ′ ∈ E
p
n/d and

Λ ∈ Λd. With the notations of Lemma 2.5, we write Λ = (a, 0)Z ⊕ (t, h)Z. Then

S =

(
a t

0 h

)
S ′ (3.4)

has n = ah squares. �

Corollary 3.2. For n ∈ Z>0,

#En =
∑

d|n

σ1(d)#E
p
n/d. (3.5)

�

Proof. By Lemma 2.5, we have

#Λd =
∑

(a,t,h)∈Z
3
≥0

ah=d
0≤t<a

1 = σ1(d). (3.6)
�

We recall that a surface S is primitive in height if h = 1 with the notations of

Lemma 2.5. That is, its lattice of periods is Per(S) = (a, 0)Z + (t, 1)Z with a ≥ 1 and 0 ≤
t ≤ a − 1. We write Λ ′

d for the set of these lattices having index d (implying d = a). We

have #Λ ′
d = d. Similarly to Lemma 3.1, we have the following.

Lemma 3.3. For n ∈ Z>0, the following bijection holds:

Eph
n �

⋃
d|n

E
p
n/d × Λ ′

d. (3.7)
�

Corollary 3.4. For n ∈ Z>0,

#Eph
n =

∑

d|n

d · #E
p
n/d. (3.8)

�

We deduce the same result for surfaces of type A. For odd n, define A ′
n as the set

of n-square-tiled surfaces of type A in H(2),Ap
n as its subset of primitive surfaces (which

coincides with the SL(2, Z)-orbit An), and A
ph
n as its subset of height-primitive surfaces.
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Lemma 3.5. For n ∈ Z odd, the following bijection holds:

A ′
n �

⋃
d|n

A
p
n/d × Λd. (3.9)

�

Proof. We recall that the type of a surface is characterized by the number of its Weier-

strass points with integer coordinates. To deduce Lemma 3.5 from Lemma 3.1 it then

suffices to prove that a Weierstrass point P has half-integer coordinates1 in a basis de-

termined by Per(S) if and only if its image by the bijection of Lemma 3.1 has half-integer

coordinates in the canonical basis of Z+iZ. Let S ∈ En, Per(S) = (a, 0)Z⊕(t, h)Z its lattice

of periods with the notations of Lemma 2.5. We set

M =

(
a t

0 h

)
. (3.10)

Let P a Weierstrass point in S, we assume that its coordinates in the basis of Per(S) are

(�/2,m/2) with m and n not simultaneously even. The coordinates of P in Z+ iZ are there-

fore (a� + mt,mh)/2, hence those of M−1P in M−1S are (�/2,m/2) in the standard basis of

Z + iZ. �

Corollary 3.6. For n ∈ Z>0,

an =
∑

d|n

σ1(d)ap
n/d. (3.11)

�

Lemma 3.7. For n ∈ Z odd, the following bijection holds:

Aph
n �

⋃
d|n

A
p
n/d × Λ ′

d. (3.12)
�

Corollary 3.8. For n ∈ Z>0,

aph
n =

∑

d|n

da
p
n/d. (3.13)

�

To express the number of primitive surfaces in terms of the numbers of primitive

in height ones, we recall some basic facts on L-functions. For an arithmetic function f,

1Meaning in (1/2)Z2 but not in Z
2 .
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we define

L(f, s) =

+∞∑

n=1

f(n)n−s. (3.14)

If id denotes the identity function, we have

L
(

id�
f, s
)

= L(f, s − �). (3.15)

For f and g two arithmetic functions with convolution product f ∗ g, we have

L(f ∗ g, s) = L(f, s)L(g, s). (3.16)

The constant equal to 1 function is denoted by and we have

L( , s) = ζ(s) (3.17)

the Riemann ζ function. Moreover

L(μ, s) =
1

ζ(s)
, L

(
σk, s

)
= ζ(s)ζ(s − k). (3.18)

Lemma 3.9. Let n ∈ Z>0. Then

ap
n =

∑

d|n

dμ(d)aph
n/d. (3.19)

�

Proof. Lemma 3.7 is then

L
(
aph, s

)
= ζ(s − 1)L

(
ap, s

)
. (3.20)

We deduce

L
(
ap, s

)
= L(μ, s − 1)L

(
aph, s

)
= L(μ id, s)L

(
aph, s

)
, (3.21)

hence the result. �

Next, we give sum-type formulae for the number of surfaces in A
ph
n .

Proposition 3.10. Let n ∈ Z>0, the number of height-primitive one-cylinder surfaces

with n squares in H(2) of type A is

1

3

∑

�1,�2,�3 odd
�1+�2+�3=n

n. (3.22)
�
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Figure 3.1 Weierstrass points of a one-cylinder surface.

Proof. See Figure 3.1. Since the cylinder is primitive in height, it has height 1. As proved

in [6, Section 5.1.1], the Weierstrass points are

(i) the saddle point, which has integer coordinates,

(ii) two points lying on the core of the cylinder, which do not have integer coor-

dinates,

(iii) the midpoints of the three saddle connections, each of these points having

integer coordinates if and only if the corresponding saddle connection

has even length. �

Proposition 3.11. Let n ∈ Z>0, the number of height-primitive two-cylinder surfaces

with n squares in H(2) of type A is

∑

h1,h2,u1,u2∈Z≥0

h1u1+h2u2=n
(h1,h2)=1
h1,h2 odd

u1<u2

u1u2 +
1

2

∑

h1,h2,u1,u2∈Z≥0

h1u1+h2u2=n
(h1,h2)=1

h1 �≡h2 (mod 2)
u1<u2

u1u2 even

u1u2. (3.23)

�

Proof. See Figure 3.2. Among height-primitive two-cylinder surfaces with parameters

h1, h2, u1, u2, t1, t2, such that h1u1 + h2u2 = n (odd):

(i) all surfaces with h1 and h2 odd are of type A;

(ii) all surfaces with u1 and u2 odd are of type B;

(iii) exactly half of the remaining surfaces (with different parity for u1 and u2

and for h1 and h2) are of type A, and half are of type B;

for each (h1, h2, u1, u2), there are u1u2 possible twists (if n is not prime, some values of

the twists may yield nonprimitive surfaces which is why we only require height-primitiv-

ity). In the case of different parities for h1 and h2 and for u1 and u2, the product u1u2 is

even and exactly half of the possible twists correspond to each type. The height-primitiv-

ity condition is just that the heights of the cylinders have greatest common divisor equal

to one. �
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Figure 3.2 Weierstrass points of a two-

cylinder surface.

4 Quasimodular forms

4.1 Motivation

The aim of this part is the computation of sums of type

Sk(n) =
∑

(a,b)∈Z
2
>0

ka+b=n

σ1(a)σ1(b) (4.1)

with k ∈ Z>0. Here we study only the cases k ∈ {1, 2, 4} but the method in fact applies to

every k [13].

Useful to the study of these sums is the weight 2 Eisenstein series

E2(z) = 1 − 24

+∞∑

n=1

σ1(n)e(nz), (4.2)

where

e(τ) = exp(2iπτ) (�m τ > 0). (4.3)

Defining

Hk(z) = E2(z)E2(kz), (4.4)

one gets

Hk(z) = 1 − 24

+∞∑

n=1

[
σ1(n) + σ1

(
n

k

)]
e(nz) + 576

+∞∑

n=1

Sk(n)e(nz). (4.5)
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We will achieve the linearisation of Hk using the theory of quasimodular forms, devel-

oped by Kaneko and Zagier. The computation of Sk(n) will be deduced for each n.

4.2 Definition

Let us therefore begin by surveying our prerequisites on quasimodular forms, referring

to [10, Section 17] for the details. Define

Γ0(N) =

{(
a b

c d

)
: (a, b, c, d) ∈ Z

4, ad − bc = 1, N | c

}
(4.6)

for all integers N ≥ 1. In particular, Γ0(1) is SL(2, Z). Denote by H the Poincaré upper half

plane:

H = {z ∈ C : �m z > 0}. (4.7)

Definition 4.1. Let N ∈ Z>0, k ∈ Z≥0, and s ∈ Z≥0. A holomorphic function

f : H −→ C (4.8)

is a quasimodular form of weight k and depth s on Γ0(N) if there exist holomorphic func-

tions f0, f1, . . . , fs on H such that

(cz + d)−kf

(
az + b

cz + d

)
=

s∑

i=0

fi(z)
(

c

cz + d

)i

(4.9)

for all
(

a b
c d

) ∈ Γ0(N) and such that fs is holomorphic at the cusps and not identically van-

ishing. By convention, the 0 function is a quasimodular form of depth 0 for each weight.

Here is what is meant by the requirement for fs to be holomorphic at the cusps.

One can show [10, Lemma 119] that if f satisfies the quasimodularity condition (4.9), then

fs satisfies the modularity condition

(cz + d)−(k−2s)fs

(
az + b

cz + d

)
= fs(z) (4.10)

for all
(

a b
c d

) ∈ Γ0(N). Asking fs to be holomorphic at the cusps is asking that, for all

M =
(

α β
γ δ

) ∈ Γ0(1), the function

z �−→ (γz + δ)−(k−2s)fs

(
αz + β

γz + δ

)
(4.11)
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has a Fourier expansion of the form

+∞∑

n=0

f̂s,M(n)e
(

nz

uM

)
, (4.12)

where

uM = inf
{
u ∈ Z>0 : Tu ∈ M−1Γ0(N)M

}
. (4.13)

In other words, fs is automatically a modular function and is required to be more than

that, a modular form of weight k − 2s on Γ0(N). It follows that if f is a quasimodular form

of weight k and depth s, non-identically vanishing, then k is even and s ≤ k/2.

Remark 4.2. Let χ be a Dirichlet character (see Section 4.4). If f satisfies all of what is

needed to be a quasimodular form except (4.9) being replaced by

(cz + d)−kf

(
az + b

cz + d

)
= χ(d)

n∑

i=0

fi(z)
(

c

cz + d

)i

, (4.14)

then one says that f is a quasimodular form of weight k, depth s, and character χ on Γ0(N).

The Eisenstein series E2 transforms as

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z) +

6

iπ

c

cz + d
(4.15)

under the action of any
(

a b
c d

) ∈ Γ0(1). Hence, E2 is a quasimodular form of weight 2 and

depth 1 on Γ0(1). Defining

EN,2(z) = E2(Nz), (4.16)

one has

(cz + d)−2EN,2

(
az + b

cz + d

)
= EN,2(z) +

6

iπN

c

cz + d
(4.17)

for all
(

a b
c d

) ∈ Γ0(N). Hence, EN,2 is a quasimodular form of weight 2 and depth 1 on

Γ0(N). One denotes by M̃k[Γ0(N)]≤s the space of quasimodular forms of weight k and

depth less than or equal to s on Γ0(N). The space M̃k[Γ0(N)]≤0 is the space Mk[Γ0(N)] of

modular forms of weight k on Γ0(N). A recurrence on the depth implies [10, Corollary 121]
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the equality

M̃k

[
Γ0(N)

]≤s
=

s⊕
i=0

Mk−2i

[
Γ0(N)

]
Ei

2. (4.18)

It is known that M2[Γ0(1)] = {0}. However, if N > 1, one deduces from

CE2 ⊕ CEN,2 ⊂ M̃2

[
Γ0(N)

]≤1
= M2

[
Γ0(N)

]⊕ CE2 (4.19)

that dim M2[Γ0(N)] ≥ 1. By the way, for every family (cd)d|N such that

∑

d|N

cd

d
= 0, (4.20)

one has

[
z �−→

∑

d|N

cdE2(dz)

]
∈ M2

[
Γ0(N)

]
. (4.21)

Denote by D the differential operator

D =
1

2iπ

d

dz
. (4.22)

It defines a linear application from M̃k[Γ0(N)]≤s to M̃k+2[Γ0(N)]≤s+1. This application is

injective and strictly increases the depth if k > 0. This property allows to linearise the

basis given in (4.18).

Lemma 4.3. Let k ≥ 2 even. Then

M̃k

[
Γ0(N)

]≤k/2
=

k/2−1⊕
i=0

DiMk−2i

[
Γ0(N)

]⊕ CDk/2−1E2. (4.23)
�

4.3 Sums of sums of divisors

Lemma 4.3 allows to reach our goal by expressing the sums S1, S2, and S4 introduced in

(4.1) as follows.
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Proposition 4.4. Let n ≥ 1. Then

S1(n) =
5

12
σ3(n) −

n

2
σ1(n) +

1

12
σ1(n),

S2(n) =
1

12
σ3(n) +

1

3
σ3

(
n

2

)
−

1

8
nσ1(n) −

1

4
nσ1

(
n

2

)
+

1

24
σ1(n) +

1

24
σ1

(
n

2

)
,

S4(n) =
1

48
σ3(n) +

1

16
σ3

(
n

2

)
+

1

3
σ3

(
n

4

)
−

1

16
nσ1(n) −

1

4
nσ1

(
n

4

)

+
1

24
σ1(n) +

1

24
σ1

(
n

4

)
.

(4.24)
�

Proof. We detail the proof for the expression of S4. The function H4, introduced in (4.5),

is a quasimodular form of weight 4 and depth 2 on Γ0(4). Lemma 4.3 gives

M̃4

[
Γ0(4)

]≤2
= M4

[
Γ0(4)

]⊕ DM2

[
Γ0(4)

]⊕ CDE2. (4.25)

The space M4[Γ0(4)] has dimension 3 and contains the linearly independent functions

E4(z) = 1 + 240

+∞∑

n=1

σ3(n)e(nz),

E2,4(z) = E4(2z),

E4,4(z) = E4(4z).

(4.26)

The space M2[Γ0(4)] has dimension 2 and is generated by

Φ2(z) = 2E2(2z) − E2(z),

Φ4(z) =
4

3
E2(4z) −

1

3
E2(z).

(4.27)

Hence, by the computations of the first seven Fourier coefficients, one gets

H4 =
1

20
E4 +

3

20
E2,4 +

4

5
E4,4 +

9

2
DΦ4 + 3DE2. (4.28)

The computation of S4 is then obtained by comparison of the Fourier coefficients of this

equality. The computation of S2 is obtained along the same lines via the equality

H2 =
1

5
E4 +

4

5
E2,4 + 3DΦ2 + 6DE2 (4.29)
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between forms of M̃4[Γ0(2)]≤2. At last, the expression of S1 is deduced from the equality

E2
2 = E4 + 12DE2 (4.30)

between forms of M̃4[Γ0(1)]≤2. �

Remark 4.5. The computation of H4, which lies in the dimension 6 vector space with ba-

sis {E4, E2,4, E4,4,DΦ2,DΦ4,DE2}, required working on seven consecutive Fourier coeffi-

cients. We briefly explain why,mentioning that any sequence of 6 consecutive coefficients

is not sufficient. For any function

f(z) =

+∞∑

n=0

f̂(n)e(nz) (4.31)

and any integer i ≥ 0, define

c(f, i) =
(
f̂(i), f̂(i + 1), f̂(i + 2), f̂(i + 3), f̂(i + 4), f̂(i + 5)

)
, (4.32)

and let

v1(i) = c
(
E4, i

)
, v2(i) = c

(
E2,4, i

)
, v3(i) = c

(
E4,4, i

)
,

v4(i) = c
(
DΦ2, i

)
, v5(i) = c

(
DΦ4, i

)
, v6(i) = c

(
DE2, i

)
.

(4.33)

Then, for each i, there exists an explicitly computable linear relation between v2(i), v3(i),

v4(i), v5(i), and v6(i). One could think of using a basis of M̃4[Γ0(1)]≤2 echelonized by in-

creasing powers of e(z). The same phenomenon would however appear when changing to

such a basis and expressing the new basis elements in terms of the original basis.

4.4 Twist by a Dirichlet character

Recall that a Dirichlet character χ is a character of a multiplicative group (Z/qZ)× ex-

tended to a function on Z by defining

χ(n) =

⎧
⎨

⎩
χ
(
n (mod q)

)
if (n, q) = 1,

0 otherwise
(4.34)

(see, e.g., [8, Chapter 3]).

A quasimodular form admits a Fourier expansion

f(z) =

+∞∑

n=0

f̂(n)e(nz). (4.35)



20 S. Lelièvre and E. Royer

Since we will need to compute the odd part of a quasimodular form, we introduce the

notion of twist of a quasimodular form by a Dirichlet character.

Definition 4.6. Let χ be a Dirichlet character. Let f be a function having Fourier expansion

of the form (4.35). The twist of f by χ is the function f⊗χ defined by the Fourier expansion

f ⊗ χ(z) =

+∞∑

n=0

χ(n)f̂(n)e(nz). (4.36)

The interest of this definition is that it allows to build quasimodular forms, as

stated in the next proposition.

Proposition 4.7. Let χ be a Dirichlet character of conductor m with nonvanishing Gauss

sum. Let f be a quasimodular form of weight k and depth s on Γ0(N). Then f⊗χ is a quasi-

modular form of weight k, depth less than or equal s, and character χ2 on Γ0(lcm(N,m2)).

�

Remark 4.8. The Gauss sum of a character χ modulo m is defined by

τ(χ) =
∑

u (mod m)

χ(u)e
(

u

m

)
. (4.37)

Proof. The proof is an adaptation of the corresponding result for modular forms (see,

e.g., [7, Theorem 7.4]). We consider for each k the following action of SL2(R) on holomor-

phic functions on H:

(
f |

k

(
a b

c d

))
(z) = (cz + d)−kf

(
az + b

cz + d

)
. (4.38)

Since χ is primitive, this sum is not zero. One has

τ(χ)g ⊗ χ =
∑

v (mod m)

χ(v)

⎛
⎝g |

k

⎛
⎝1

v

m
0 1

⎞
⎠
⎞
⎠ (4.39)

as soon as g has a Fourier expansion of the form (4.35). Define M = lcm(N,m2). Let(
α β
γ δ

) ∈ Γ0(M). The matrix

⎛
⎝1

v

m
0 1

⎞
⎠
(

α β

γ δ

)⎛
⎝1

vδ2

m
0 1

⎞
⎠

−1

(4.40)
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being in Γ0(N), one deduces from the level N quasimodularity of f and (4.39) that

τ(χ)

(
f ⊗ χ |

k

(
α β

γ δ

))
(z)

=

s∑

i=0

∑

v (mod m)

χ(v)

⎛
⎝fi |

k−2i

⎛
⎝1

δ2v

m
0 1

⎞
⎠
⎞
⎠ (z)

⎡
⎢⎢⎣ γ

γ

(
z +

δ2v

m

)
+ δ −

γδ2v

m

⎤
⎥⎥⎦

i

.

(4.41)

Since the functions fi are themselves quasimodular forms (see [10, Lemma 119]), they

admit a Fourier expansion. Hence, from (4.39),

τ(χ)

(
f ⊗ χ |

k

(
α β

γ δ

))
(z) = τ(χ)χ(δ)2

s∑

i=0

fi ⊗ χ(z)
(

γ

γz + δ

)i

. (4.42)

It follows that f ⊗ χ satisfies the quasimodularity condition. There remains to prove the

holomorphy at the cusps, which is quite delicate since fs ⊗ χ may be 0 even though fs

is not. Actually, Lemma 4.3 and the fact that the twist of a modular form on Γ0(N) by a

primitive Dirichlet character of conductor m is a modular form on Γ0(M) show that the

proposition is proved as soon as it is proved for f = Dk/2−1E2. In that case, s = k/2 and

fs ⊗ χ is not 0 (see [10, Lemma 118]), hence fs being a modular form implies that fs ⊗ χ is

also one. �

5 Proof of Hubert and Lelièvre conjecture

The aim of this part is the proof of Theorem 1.1. In all this part, n is assumed to be odd.

Define

α1(n, r) =
∑

(h1,u1,h2,u2)∈A1(n,r)

u1u2,

α2(n, r) =
1

2

∑

(h1,u1,h2,u2)∈A2(n,r)

u1u2,

α3(n, r) =
n

3

∑

(u1,u2,u3)∈A3(n,r)

1

(5.1)
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with

A1(n, r)

=

{(
h1, u1, h2, u2

) ∈ Z
4
>0 :

∣∣∣∣∣
(
h1, h2

)
= 1,

h1 and h2 odd,
u1 < u2, h1u1 + h2u2 =

n

r

}
,

A2(n, r)

=

{(
h1, u1, h2, u2

) ∈ Z
4
>0 :

∣∣∣∣∣
(
h1, h2

)
= 1,

h1 or h2 even,

∣∣∣∣∣
u1 < u2,

u1 or u2 even,
h1u1 + h2u2 =

n

r

}
,

A3(n, r)

=

{(
u1, u2, u3

) ∈ (2Z≥0 + 1)3 : u1 + u2 + u3 =
n

r

}
.

(5.2)

By Lemma 3.9 and Propositions 3.10 and 3.11, our goal is the computation of

ap
n =

∑

r|n

μ(r)
[
rα1(n, r) + rα2(n, r) + α3(n, r)

]
. (5.3)

This, and hence Theorem 1.1, follows from the forthcoming Lemmas 5.3, 5.6, and 5.7.

5.1 A preliminary arithmetical result

The following lemma will be useful in the sequel.

Lemma 5.1. Let n ≥ 1. Then

∑

r|n

rμ(r)
∑

d|n/r

μ(d)σk

(
n

rd

)
= nk

∑

r|n

μ(r)
rk−1

,

∑

r|n

μ(r)
∑

d|n/r

μ(d)
d

σ1

(
n

rd

)
= n

∑

d|n

μ(d)
d2

.

(5.4)

�

Proof. Consider the function

f =
(

id�
μ
) ∗ μ ∗ σk. (5.5)

Then

L(f, s) =
ζ(s − k)
ζ(s − �)

= L
(

id�
μ, s
)
L
(

idk
, s
)
, (5.6)
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hence

f =
(

id�
μ
) ∗ idk

. (5.7)

The lemma follows by taking � = 1 for the first equality and � = k = 1 for the second. �

Remark 5.2. Note that

∑

r|n

μ(r)
r2

=
∏

p|n

(
1 −

1

p2

)
. (5.8)

5.2 Two cylinders and odd heights

Here, we compute the sum

∑

r|n

rμ(r)α1(n, r). (5.9)

More precisely, we prove the following lemma.

Lemma 5.3. The number of type A primitive surfaces with n squares and two cylinders

of odd height is

n2(n − 1)
8

∑

r|n

μ(r)
r2

. (5.10)
�

Write

α1(n, r) = γ1(n, r) − α̃1(n, r) (5.11)

with

γ1(n, r) =
∑

(h1,u1,h2,u2)∈C(n,r)

u1u2,

α̃1(n, r) =
∑

(h1,u1,h2,u2)∈Ã1(n,r)

u1u2,
(5.12)

where

C(n, r) =

{(
h1, u1, h2, u2

) ∈ Z
4
>0 :

(
h1, h2

)
= 1, u1 < u2, h1u1 + h2u2 =

n

r

}

(5.13)
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and (recalling that n is odd)

Ã1(n, r) =

{(
h1, u1, h2, u2

) ∈ Z
4
>0 :

∣∣∣∣∣
(
h1, h2

)
= 1,

h1 or h2 even,
u1 < u2, h1u1 + h2u2 =

n

r

}
.

(5.14)

Note that the sum

∑

r|n

rμ(r)γ1(n, r) (5.15)

is the total number of primitive surfaces with two cylinders. Lemma 5.3 is a consequence

of the two following Lemmas 5.4 and 5.5 and of (5.11).

5.2.1 Surfaces with two cylinders. We prove the following result.

Lemma 5.4. For n odd, the number of primitive surfaces with n squares and two cylin-

ders is

n2(5n − 18)
24

∑

r|n

μ(r)
r2

+
n

2
ϕ(n), (5.16)

where ϕ is the Euler function. �

Using Möbius inversion formula, one obtains

γ1(n, r) =
∑

d|n/r

μ(d)
∑

(i1,u1,i2,u2)∈Z
4
>0

u1<u2
i1u1+i2u2=n/(rd)

u1u2

= γ1,1(n, r) − γ1,2(n, r)

(5.17)

with

γ1,1(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(i1,u2,i2,u2)∈Z
4
>0

i1u1+i2u2=n/(rd)

u1u2,

γ1,2(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(i1,i2,u)∈Z
3
>0

(i1+i2)u=n/(rd)

u2.

(5.18)
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One has

γ1,1(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(v1,v2)∈Z
2
>0

v1+v2=n/(rd)

∑

w1|v1

w1

∑

w2|v2

w2

=
1

2

∑

d|n/r

μ(d)S1

(
n

rd

)
.

(5.19)

By Proposition 4.4, this can be linearised to

γ1,1(n, r) =
5

24

∑

d|n/r

μ(d)σ3

(
n

rd

)
−

n

4r

∑

d|n/r

μ(d)
d

σ1

(
n

rd

)

+
1

24

∑

d|n/r

μ(d)σ1

(
n

rd

) (5.20)

so as to obtain

∑

r|n

rμ(r)γ1,1(n, r) =

(
5

24
n3 −

1

4
n2

)∑

r|n

μ(r)
r2

(5.21)

thanks to Lemma 5.1.

Next, one has

γ1,2(n, r) =
1

2

∑

d|n/r

μ(d)
∑

v|n/(rd)

v2

(
n

rdv
− 1

)
(5.22)

so that

∑

r|n

rμ(r)γ1,2(n, r) =
n

2

∑

r|n

μ(r)
∑

d|n/r

μ(d)
d

σ1

( n

rd

)

−
1

2

∑

r|n

rμ(r)
∑

d|n/r

μ(d)σ2

(
n

rd

)

=
n2

2

∑

r|n

μ(r)
r2

−
n

2
ϕ(n)

(5.23)

by Lemma 5.1.

Finally, reporting (5.21) and (5.23) in (5.17) leads to Lemma 5.4.
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5.2.2 Even product of heights. Let us now compute the contribution of α̃1(n, r).

Lemma 5.5. The number of type A primitive surfaces with n squares and two cylinders,

one having even height, is

n2(2n − 15)
24

∑

r|n

μ(r)
r2

+
n

2
ϕ(n). (5.24)

�

Write

α̃1(n, r) = α̃1,1(n, r) − α̃1,2(n, r) (5.25)

with, recalling again that n is odd,

α̃1,1(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(i1,u1,i2,u2)∈Ã1,1(n,r)

u1u2,

α̃1,2(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(i1,i2,u)∈Ã1,2(n,r)

u2,

(5.26)

where

Ã1,1 =

{(
i1, u1, i2, u2

) ∈ Z
4
>0 : i1 or i2 even, i1u1 + i2u2 =

n

dr

}
,

Ã1,2 =

{(
i1, i2, u

) ∈ Z
3
>0 : i1 or i2 even,

(
i1 + i2

)
u =

n

dr

}
.

(5.27)

Since i1 and i2 are not simultaneously even, one has

α̃1,1(n, r) =
∑

d|n/r

μ(d)
∑

(v1,v2)∈Z
2
>0

v1+v2=n/(dr)

∑

i1|v1

i1 even

∑

i2|v2

i2 =
∑

d|n/r

μ(d)S2

(
n

dr

)
.

(5.28)

Using Proposition 4.4 and Lemma 5.1, one obtains

∑

r|n

rμ(r)α̃1,1(n, r) =

(
1

12
n3 −

1

8
n2

)∑

r|n

μ(r)
r2

. (5.29)

Next,

α̃1,2(n, r) =
1

2

∑

d|n/r

μ(d)
∑

u|n/(dr)

u2

(
n

rdu
− 1

)
. (5.30)
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Lemma 5.1 gives

∑

r|n

rμ(r)α̃1,2(n, r) =
n2

2

∑

r|n

μ(r)
r2

−
n

2
ϕ(n). (5.31)

Reporting (5.29) and (5.31) in (5.25) leads to Lemma 5.5.

5.3 Two cylinders with even product of heights

Compute at last the sum

∑

r|n

rμ(r)α2(n, r). (5.32)

Lemma 5.6. The number of type A primitive surfaces with n squares and two cylinders,

one having an even height, the other having an even length, is

n2(n − 3)
48

∑

r|n

μ(r)
r2

. (5.33)
�

Since n is odd, one has

α2(n, r) =
1

4

∑

d|n/r

μ(d)
∑

(i1,u1,i2,u2)∈Â1,2(n,r,d)

u1u2 (5.34)

with

Â1,2(n, r, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
i1, u1, i2, u2

) ∈ Z
4
>0 :

∣∣∣∣∣∣∣∣∣

i1 and u1 even,

or

i2 and u2 even,

i1u1 + i2u2 =
n

rd

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(5.35)

Hence,

α2(n, r) =
1

2

∑

d|n/r

μ(d)
∑

(i1,u1,i2,u2)∈Z
4
>0

i1 and u1 even
i1u1+i2u2=n/(rd)

u1u2

=
∑

d|n/r

μ(d)S4

(
n

rd

)
.

(5.36)

The result follows from Proposition 4.4 and Lemma 5.1.
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5.4 One cylinder

The counting in that case is more direct.

Lemma 5.7. The number of type A primitive surfaces with n squares and one cylinder is

n3

24

∑

r|n

μ(r)
r2

. (5.37)
�

One actually has

∑

r|n

μ(r)α3(n, r) =
n

3

∑

r|n

μ

(
n

r

)
#

{(
v1, v2, v3

) ∈ Z
3
≥0 : v1 + v2 + v3 =

r − 3

2

}

=
n

3

∑

r|n

μ

(
n

r

)
r2 − 1

8

=
1

24
n3

∑

r|n

μ(r)
r2

.

(5.38)

5.5 Computation of a generating series

The number of non-necessarily primitive surfaces with an odd number n of squares of

type A is given by

an =
∑

d|n

σ1

(
n

d

)
a

p
d. (5.39)

Even though this does not have any geometric sense, one can define numbers a
p
n and an

by these formulae for even n ≥ 2. We will compute the Fourier series attached to the

resulting sequence (an)n∈Z>0
. Corollary 1.3 follows directly from the following proposi-

tion.

Proposition 5.8. Let n ≥ 1. Then

an =
3

16

[
σ3(n) − nσ1(n)

]
. (5.40)

�
Proof. We use the basic facts of Section 3.1. We have

an =
3

16

[
k3(n) − k2(n)

]
, (5.41)

where, for � ∈ Z, the arithmetical function k� is defined by

k� = σ1 ∗ ( id�
Ψ
)

(5.42)
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with

Ψ(n) =
∑

r|n

μ(r)
r2

= ∗ (μ id−2 )(n). (5.43)

We deduce that

L
(
k�, s

)
=

ζ(s)ζ(s − 1)ζ(s − �)
ζ(s − � + 2)

, (5.44)

hence

k3 = σ3, k2 = id σ1. (5.45)
�

6 The associated Fourier series

Recall that the two weight 2 modular forms Φ2 and Φ4 on Γ0(2) and Γ0(4), respectively,

have been defined in (4.27). In this section, we prove Theorem 1.5. Since we want to elim-

inate the coefficients of even order, it is natural to consider the Fourier series obtained

by twisting all coefficients by a modulus 2 character. By Proposition 4.7, one obtains a

quasimodular form of weight 4, depth less than or equal to 2 on Γ0(4), hence a linear

combination of E4, E2,4, E4,4, DΦ2, DΦ4, and DE2 (see the proof of Proposition 4.4). The

coefficients of this combination are found by computation of the first seven Fourier coef-

ficients.
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[5] P. Hubert and S. Lelièvre, Noncongruence subgroups in H(2), International Mathematics Re-

search Notices (2005), no. 1, 47–64.

[6] , Prime arithmetic Teichmüller discs in H(2), Israel Journal of Mathematics 151 (2006),

281–321.

[7] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, vol. 17,

American Mathematical Society, Rhode Island, 1997.

[8] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Collo-

quium Publications, vol. 53, American Mathematical Society, Rhode Island, 2004.

[9] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, The

Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Mas-
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Mathématique de France, Paris, 2005, pp. 1–117.

[11] H. Masur, Ergodic theory of translation surfaces, Handbook of Dynamical Systems. Vol. 1B,

Elsevier B. V., Amsterdam, 2006, pp. 527–547.

[12] C. T. McMullen, Teichmüller curves in genus two: discriminant and spin, Mathematische An-

nalen 333 (2005), no. 1, 87–130.

[13] E. Royer, Evaluating convolution sums of the divisor function by quasimodular forms,

preprint, 2005, http://arxiv.org/abs/math.NT/0510429.

[14] J.-P. Serre, Cours d’Arithmétique, Deuxième édition revue et corrigée, Le Mathématicien, no. 2,

Presses Universitaires de France, Paris, 1977.

[15] A. Zorich, Square tiled surfaces and Teichmüller volumes of the moduli spaces of abelian dif-

ferentials, Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin, 2002, pp.

459–471.
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Emmanuel Royer: I3M,UMR CNRS 5149,Université Montpellier II,Case Courier 51, Place Eugène

Bataillon, 34095 Montpellier Cedex 5, France;Université Montpellier III,MIAp,Route de Mende,
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