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A large sieve inequality of
Elliott–Montgomery–Vaughan type for

Maass forms on GL(n,R) with applications

Yuk-Kam Lau, Ming Ho Ng, Emmanuel Royer and Yingnan Wang

Abstract. In this paper, we establish a large sieve inequality of Elliott–
Montgomery–Vaughan type for Maass forms on GL(n,R) and explore three
applications.

1. Introduction

Elliott [2], [1], and Montgomery and Vaughan [11] independently developed some
sort of large sieve inequalities to study Linnik’s problem, which may yield a more
general result than the classical Vinogradov’s result, cf. [9]. This device, known
as the large sieve inequalities of Elliott–Montgomery–Vaughan (EMV) type, was
generalized to the setting of primitive holomorphic cusp forms on GL(2,R) and
applied to obtain some statistical results on Hecke eigenvalues of primitive holo-
morphic cusp forms in [8]. Later, Wang [15] generalized the results to the case of
Maass forms on GL(2,R).

It is natural to ask for a generalization of large sieve inequalities of EMV type
to Maass forms on GL(n,R) (n ≥ 3). There are two main difficulties: the first one
is that for n ≥ 3 the Hecke relations for GL(n,R) are much more complicated than
those of GL(2,R), and the trace formula for GL(n,R) with n ≥ 3 is not as simple
as the trace formula (say Kuznetsov’s and Petersson’s trace formulas) on GL(2,R).
Recently, Xiao and Xu [16], using Kuznetsov’s trace formula and Hecke’s relations,
made a breakthrough and obtained a large sieve inequality of EMV type to Maass
forms on GL(3,R). Moreover, they also applied their large sieve inequality to get
a statistical result of sign changes on the Hecke eigenvalues for GL(3,R).

In this paper, we generalize the large sieve inequalities of EMV type to Maass
forms on GL(n,R) for all n ≥ 3, and the result is comparable to the case of
automorphic forms on GL(2,R) (see [8], [15]). Our main tool is the automorphic
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Plancherel density theorem – a recent great progress due to Matz and Templier [10].
We remark the use of properties of (degenerated) Schur’s polynomials instead of
Hecke’s relations to avoid the complicated calculations as in [16]. More precisely,
the (degenerated) Schur polynomial is employed to evaluate the main term when
applying the truncated trace formula (Corollary 3.3 in [6]), since the main term in
Corollary 3.3 of [6] is expressed in the form of orbital integral involving the (de-
generated) Schur polynomial by the work of Matz and Templier [10]. Moreover, we
apply our large sieve inequality Theorem 1.1 on the GL(n,R) analogue of Linnik’s
problem, the sign change problems, and the Montgomery–Vaughan conjecture.

Let H� = {φj} be an orthogonal basis consisting of Hecke–Maass cusp forms
for SL(n,R). Each φj is associated with a Langlands parameter μj ∈ a∗

C
/W , where

a∗
C
∼= {z ∈ Cn :

∑
i zi = 0} and W is the Weyl group of GL(n,R). For t ≥ 1, we

let

Ht := {φj ∈ H� : ‖μj‖2 ≤ t, μj ∈ ia∗},(1.1)

where ‖ · ‖2 is the standard Euclidean norm, and ia∗ ⊂ a∗
C
is isomorphic to iRn−1.

It is known that |Ht| � td, with d = n(n+ 1)/2.

Let Aφ(m1,m2, . . . ,mn−1) be the Fourier coefficient of φ ∈ Ht. In this paper,
we normalize each φ ∈ Ht such that

Aφ(1, 1, . . . , 1) = 1.

It is well known that

Aφ(m1,m2, . . . ,mn−1) = Aφ(mn−1,mn−2, . . . ,m1).

Moreover, for any κ = (κ1, . . . , κn−1) ∈ N
n−1
0 and any prime p,

(1.2) Aφ(p
κ) := Aφ(p

κ1 , pκ2 , · · · , pκn−1) = Sκ(αφ,1(p), αφ,2(p), . . . , αφ,n(p)),

where Sκ is the (degenerate) Schur polynomial (see Section 2 for definition, and re-
fer to [3] or [7] for a detailed exposition), and αφ(p) :=(αφ,1(p), αφ,2(p), . . . , αφ,n(p))
is (a representative of) the Satake parameter associated to φ at p. Every Satake
parameter αφ(p) satisfies

∏n
i=1 αφ,i(p) = 1 and

αφ,1(p) + · · ·+ αφ,n(p) = Aφ(p, 1, . . . , 1).

Put κι = (κn−1, . . . , κ1) if κ = (κ1, . . . , κn−1). Then we have

Aφ(p
κι

) = Aφ(p
κn−1 , . . . , pκ1) = Aφ(pκ),

and Aφ(p
κ) ∈ R if κ = κι.

Notation: For κ = (κ1, . . . , κn−1) ∈ N
n−1
0 , we denote ‖κ‖ :=

∑n−1
j=1 (n − j)κj

and |κ| = ∑n−1
j=1 κj .
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Theorem 1.1. Let 0 	= κ = (κ1, . . . , κn−1) ∈ N
n−1
0 . Let j ≥ 1 be any integer and

let {bp}p be a sequence of complex numbers indexed by prime numbers such that
|bp| ≤ B for some constant B > 0 and for all primes p. Then

1

|Ht|
∑
φ∈Ht

∣∣∣ ∑
P<p≤Q

bp
Aφ(p

κ1 , . . . , pκn−1)

p

∣∣∣2j


 t−1/2
(BCκ Q

L‖κ‖

logP

)2j

+
( (BCκ)

2j

P logP

)j{
1 +

(40j logP
P

)j/3}
(1.3)

holds uniformly for

B > 0, j ≥ 1, 2 ≤ P < Q ≤ 2P,

where L is a positive constant, 1 ≤ Cκ := 10(1+ |κ|)n2−n, and the implied constant
depends on κ only.

Let q ≥ 2 be an integer and let χ be a non principal Dirichlet character mod-
ulo q. Then the evaluation of the least integer nχ among all positive integers n for
which χ(n) 	= 0, 1 is referred as Linnik’s problem. One generalization formulated
to Maass forms on GL(n,R) is the evaluation of the smallest integer n for which

Aφ1
(n, 1, . . . , 1) 	= Aφ2

(n, 1, . . . , 1),

where φ1 	= φ2. We denote this smallest integer by n1,2. The first application uses
Theorem 1.1 to investigate an analogue of Linnik’s problem.

Suppose P is a set of prime numbers of positive density in the sense that

(1.4)
∑

z<p≤2z

p∈P

1

p
≥ Δ

log z
(∀z ≥ z0),

with some fixed constants Δ > 0 and z0 > 0.

Theorem 1.2. Let 0 	= κ = (κ1, . . . , κn−1) ∈ N
n−1
0 and assume the set P (of

primes) satisfies (1.4). Let Λ = {λ(p)}p be a fixed complex sequence indexed by
prime numbers. For any δ > 0, there is a positive constant C = C(δ, κ,P) such
that the number of φ ∈ Ht satisfying

Aφ(p
κ1 , . . . , pκn−1) = λ(p) for p ∈ P, and δ log t < p ≤ 2δ log t

is bounded by


 tde−Clog t/ log2 t,

where logr is the r-fold iterated logarithm. The implied constant depends at most
on δ, κ and P.

Remark 1.3. Refer to [8] and [15] for the case of GL(2,R).
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Corollary 1.4. Let φ0 ∈ Ht be fixed, and let P be as stated in Theorem 1.2. Let
� ∈ N and let δ > 0 be any number. Then there is a positive constant C = C(δ, �,P)
such that the number of φ ∈ Ht satisfying

Aφ(p
�, 1, . . . , 1) = Aφ0

(p�, 1, . . . , 1) for p ∈ P, and δ log t < p ≤ 2δ log t

is bounded by

δ,�,P tde−Clog t/ log2 t.

By the corollary, we see that for any fixed φ1, the number of φ2 ∈ Ht for which

n1,2 
 log t

does not hold is

 ∣∣Ht

∣∣e−Clog t/ log2 t.

The second application concerns the sign changes of Maass forms on GL(n,R).
In the case of GL(2,R), there are fruitful results (for example, see [5], [12], [13]).
In the case of GL(3,R), Steiger [14] proved that there is a positive proportion of
Hecke–Maass forms φ with positive real part of Aφ(p, 1) for a fixed prime p, and
Xiao and Xu [16] gave a statistical result on the signs of Aφ(p

κ1 , pκ2)+Aφ(p
κ2 , pκ1).

Applying Theorem 1.1, we obtain the following result.

Theorem 1.5. Let 0 	= κ = (κ1, . . . , κn−1) ∈ N
n−1
0 . Let {εp}p∈P be a sequence of

real numbers with εp ∈ {±1}, where the set of primes P satisfies (1.4). For any
δ > 0, there is a positive constant C = C(δ, κ,P) such that the number of φ ∈ Ht

satisfying
εp(Aφ(p

κ1 , . . . , pκn−1) +Aφ(p
κn−1 , . . . , pκ1)) > 0

for p ∈ P and δ log t < p ≤ 2δ log t is bounded by


 tde−Clog t/ log2 t.

The implied constant depends at most on δ, κ and P.

Remark 1.6. Refer to [8], [15] for the case of GL(2,R), and to [16] for GL(3,R).

The size of L(1, f) for L-functions over a family of f has attracted much interest.
For φ ∈ Ht, its associated L-function is defined as

L(s, φ) :=
∑
m≥1

Aφ(m, 1, . . . , 1)m−s,

for �e s > (n+ 1)/2, and factors into the Euler product

L(s, φ) =
∏
p

n∏
i=1

(1− αφ,i(p)p
−s)−1,

where αφ,i(p), 1 ≤ i ≤ n, are the Satake parameters. It is well known that L(s, φ)
can be analytically continued to the whole complex plane.

Recently, Lau and Wang [7] proved that for all φ ∈ Ht, we have

{1 + o(1)}(2B−
n log2 t)

−A−
n ≤ |L(1, φ)| ≤ {1 + o(1)}(2B+

n log2 t)
A+

n
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under the generalized Ramanujan conjecture and the generalized Riemann hypoth-
esis. Here B±

n are the positive constants in Lemma 5.3 of [7], and

A+
n := n and A−

n :=

{
n if n is even,

n cos(π/n) if n is odd.

On the other hand, Lau and Wang [7] also proved that there exist φ± ∈ Ht such
that

|L(1, φ−)| ≤ {1 + o(1)}(B−
n log2 t)

−A−
n , |L(1, φ+)| ≥ {1 + o(1)}(B+

n log2 t)
A+

n .

The proportion of such exceptional φ± inHt is at least exp
(−(log t)/(log2 t)

3+o(1)
)
.

In fact, alongside the Montgomery–Vaughan conjecture (cf. Conjecture 1 in [4]),

the proportion of φ± in HT satisfying |L(1, φ±)|±1 ≥ (B±
n log2 T )

A±
n is predicted

to be > exp(−C log t/ log2 t) and < exp(−c log t/ log2 t), respectively, for some
constants C > c > 0.

Theorem 1.1 gives an upper bound towards the Montgomery–Vaughan conjec-
ture. Define

F+
t (s) =

1

|Ht|
∑
φ∈Ht

|L(1,φ)|>(B+
n s)A

+
n

1, and F−
t (s) =

1

|Ht|
∑
φ∈Ht

|L(1,φ)|<(B−
n s)A

−
n

1.

Theorem 1.7. For any ε > 0, there are two positive constants c = c(ε) and
t0 = t0(ε) such that

F±
t (log2 t+ r) ≤ exp

(
− c(|r|+ 1)

log t

(log2 t)(log3 t)(log4 t)

)

for t ≥ t0 and log ε ≤ r ≤ (9− ε) log2 t.

Remark 1.8. Refer to [8] and [15] for the case of GL(2,R).

2. Preliminaries

The Fourier coefficients Aφ(p
κ) can be expressed in terms of the (degenerate) Schur

polynomials and Satake parameters as in (1.2). The degenerate Schur polynomial
is defined as

(2.1) Sκ(x1, x2, . . . , xn) :=
det

(
x
∑n−i

l=1 (κl+1)
j

)
1≤i,j≤n

det
(
x
∑n−i

l=1 1
j

)
1≤i,j≤n

for κ = (κ1, . . . , κn−1) ∈ N
n−1
0 . Matz and Templier established an automorphic

equidistribution of the family {Aφ(p
κ) : φ ∈ H�} – the vertical Sato–Tate law for

Hecke–Maass forms. Now we explain a consequence of the equidistribution result.
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Let Sn be the symmetric group, and let

T0 =
{
(eiθ1 , eiθ2 , . . . , eiθn) ∈ (S1)n : ei(θ1+θ2+···+θn) = 1

}
.

We define two measures dμST and dμp on T0/Sn whose integration formulas (over
[0, 2π]n−1) are given by

dμST =
1

n!

1

(2π)n−1

∏
1≤i<j≤n

|eiθi − eiθj |2 dθ1 · · · dθn−1

and

dμp =
1

n!

n∏
i=2

1− p−i

1− p−1
·

∏
1≤i<j≤n

∣∣∣eiθi − p−1eiθj

eiθi − eiθj

∣∣∣−2

· 1

(2π)n−1
dθ1 · · · dθn−1.

Define Sκ(1, . . . , 1) by taking xi → 1. By Lemma 7.1 (2) in [7], we have for any
X ≥ 1 and κ ∈ N

n−1
0 ,

(2.2) max
|xi|≤X, ∀ i

|Sκ(x1, . . . , xn)| ≤ X‖κ‖ Sκ(1, . . . , 1) ≤ X‖κ‖ (1 + |κ|)n2−n.

A consequence of Matz and Templier’s work on the vertical Sato–Tate is the fol-
lowing, cf. Corollary 3.3 in [6].

Lemma 2.1. Let κ = (κ1, . . . , κn−1)∈N
n−1
0 , Ht and Aφ(p

κ) = Aφ(p
κ1 , . . . , pκn−1)

be defined as above, cf. (1.1), (1.2) and (2.1). Then for any �,m ∈ N,

1

|Ht|
∑
φ∈Ht

∏
pup‖�,pvp‖m

Aφ(p
κ1 , . . . , pκn−1)up Aφ(pκ1 , . . . , pκn−1)

vp

=
∏

pup‖�,pvp‖m

∫
T0/Sn

Sup
κ S

vp
κ dμp +O

(
t−1/2

∏
pup‖�,pvp‖m

(
cκ p

L‖κ‖)up+vp
)
,

where L is a positive constant, 1 ≤ cκ := (1 + |κ|)n2−n.

The product of two Schur polynomials Sκ and Sκ′ may be evaluated with the
Littlewood–Richardson rule:

(2.3) SκSκ′ = Sκ · Sκ′ =
∑
ξ

dξκκ′ Sξ,

where the dξκκ′ ’s are nonnegative integers and the summation runs over ξ ∈ N
n−1
0

satisfying ‖ξ‖ ≤ ‖κ‖ + ‖κ′‖ and ‖ξ‖ ≡ ‖κ‖ + ‖κ′‖ mod n. (Recall that ‖κ‖ :=∑
i(n − i)κi.) Moreover, {Sκ} form an orthonormal set under the inner product

induced by the measure dμST,

(2.4) 〈Sκ, Sκ′〉 =
∫
[0,2π]n−1

Sκ(θ)Sκ′(θ) dμST = δκ=κ′ .
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As well, by Proposition 7.4 (1) in [7] we have

∫
T0/Sn

Sκ dμp =
n−1∏
i=1

(1− p−i) ·
∑

η∈N
n−1
0

dηκη · p−‖η‖,

where the sum over η is supported on |η| ≥ ‖κ‖/n and with (2.2) and (2.4),

0 ≤ dηκη =

∫
T0/Sn

Sκ |Sη|2 dμST ≤ (1 + |κ|)(n2−n).

Consequently, for ‖κ‖ 	= 0 we have

∣∣∣ ∫
T0/Sn

Sκ dμp

∣∣∣ ≤ (1 + |κ|)(n2−n)
n−1∏
i=1

(1− p−i) max∑
i ηi=	‖κ‖/n


( ∏
1≤i≤n−1

∑
�≥ηi

p−i�
)

≤ (1 + |κ|)(n2−n) max
|η|=	‖κ‖/n


p−‖η‖ ≤ (1 + |κ|)(n2−n)p−1(2.5)

where �x� denotes the smallest integer greater than or equal to x. (Note |η| ≤ ‖η‖.)
By Cauchy–Schwarz’s inequality and (2.2), we have

∑
‖ξ‖≤n|κ|

(dξκκ′)
2 = 〈SκSκ′ , SκSκ′〉

≤ Sκ(1, . . . , 1)Sκ′(1, . . . , 1)〈Sκ, Sκ〉1/2〈Sκ′ , Sκ′〉1/2

≤ ((1 + |κ|)(1 + |κ′|))n2−n = cκ cκ′ .(2.6)

We need an arithmetic function and a result from [8].

Lemma 2.2. Let 2 ≤ P < Q ≤ 2P , j ≥ 1 and n ≥ 1. Define

aj(n) = aj(n;P,Q) = | {(p1, . . . , pj) : p1 · · · pj = n, P < p1, . . . , pj ≤ Q} |.

For any d > 0,
∑

n aj(n)d
Ω(n)/n 
 (3d/ logP )j ; moreover,

∑
n

aj(n
2)

dΩ(n)

n2
≤ δ2|j

( 3dj

P logP

)j/2

,

∑
n

�
aj(n)

dΩ(n)

n
≤

( 12d2j

P logP

)j/2{
1 +

(j logP
54P

)j/6}
,

∑
m


 ∑�

(m,n)=1

aj(mn)
dΩ(mn)

m2n
≤

( 48d2j

P logP

)j/2{
1 +

(20j logP
P

)j/6}
,

where Ω(n) counts the number of (not necessarily distinct) prime divisors, δ2|j = 1

if 2|j or 0 otherwise,
∑


and
∑�

run over squarefree and squarefull integers,
respectively.
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3. Proof of Theorem 1.1

Let aj(·) be defined as in Lemma 2.2. Squaring out, we have

∣∣∣ ∑
P<p≤Q

bp
Aφ(p

κ1 , . . . , pκn−1)

p

∣∣∣2j

=
( ∑

P<p≤Q

bp
Aφ(p

κ1 , . . . , pκn−1)

p

)j( ∑
P<p≤Q

bp
Aφ(pκ1 , . . . , pκn−1)

p

)j

=
( ∑

P j<�≤Qj

aj(�)
b�
�

∏
pu‖�

Aφ(p
κ1 , . . . , pκn−1)u

)

×
( ∑

P j<m≤Qj

aj(m)
bm
m

∏
qv‖m

Aφ(pκ1 , . . . , pκn−1)
v
)

=
∑

P j<�,m≤Qj

aj(�) aj(m)
b� bm
�m

×
∏

pup‖�, pvp‖m
Aφ(p

κ1 , . . . , pκn−1)up Aφ(pκ1 , . . . , pκn−1)
vp
.

Averaging over φ ∈ Ht, it follows from Lemma 2.1 that

1

|Ht|
∑
φ∈Ht

∏
pup‖�, pvp‖m

· · ·(3.1)

=
∏

pup‖�, pvp‖m

∫
T0/Sn

Sup
κ S

vp
κ dμp +O

(
t−1/2

(
cκQ

L‖κ‖)2j).
Thus the left side of (1.3) can be expressed as follows:

1

|Ht|
∑
φ∈Ht

∣∣∣ ∑
P<p≤Q

bp
Aφ(p

κ1 , . . . , pκn−1)

p

∣∣∣2j = M + E.(3.2)

The error term E is


 t−1/2
(
cκQ

L‖κ‖)2j ∑
P j<�,m≤Qj

aj(�) aj(m)
b� bm
�m


 t−1/2
(
cκQ

L‖κ‖)2j( 3B

logP

)2j

(3.3)

by Lemma 2.2.
Next we evaluate the main term

M =
∑

P j<�,m≤Qj

aj(�)aj(m)
b� bm
�m

∏
pup‖�,pvp‖m

∫
T0/Sn

Sup
κ S

vp
κ dμp.(3.4)
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Write � = �1�
′ and m = m1m

′ such that �1m1 is squarefree, �′m′ is squarefull and
(�1m1, �

′m′) = 1.1 (Note �1m1 = 1 when �m is squarefull.) Set h = �1m1 and
r = �′m′. We split the product over prime divisors of �m in (3.4) into a product
of two pieces over prime divisors of �1m1 and �′m′ respectively:∏
pup‖�,pvp‖m

· · · =
∏

pup‖�1,pvp‖m1

∫
T0/Sn

Sup
κ S

vp
κ dμp

∏
pup‖�′,pvp‖m′

∫
T0/Sn

Sup
κ S

vp
κ dμp.

Inside the second product, we invoke the trivial bound (2.2) and for the first
product (as �1m1 is squarefree), we have up + vp = 1 and thus apply (2.5). This
leads to∣∣∣ ∏
pup‖�,pvp‖m

∫
T0/Sn

Sup
κ S

vp
κ dμp

∣∣∣
≤ (1 + |κ|)Ω(�′m′)(n2−n)

∏
pup‖�1,pvp‖m1

(1 + |κ|)n2−np−1 ≤ (1 + |κ|)2j(n2−n)h−1,

and

|M | ≤ (1 + |κ|)2j(n2−n)
∑

P j<�1�′,m1m′≤Qj

aj(�1�
′) aj(m1m

′)

∣∣b�1�′ bm1m′
∣∣

(�1m1)2 �′m′

≤ (1 + |κ|)2j(n2−n)B2j
∑


h

∑�

r

1

h2r

∑
P j<�1�

′,m1m
′≤Qj

�1m1=h, �′m′=r

aj(�1�
′) aj(m1m

′)

≤ (1 + |κ|)2j(n2−n) B2j
∑


h

∑�

r

a2j(hr)

h2r


 (1 + |κ|)2j(n2−n) B2j
( 96j

P logP

)j{
1 +

(40j logP
P

)j/3}
,

where the implied constant is independent of j.

4. Proof of Theorem 1.2

Let δ log t ≤ P ≤ (log t)10 and write PP := P ∩ (P, 2P ]. Define

E(t;P ) = {φ ∈ Ht : Aφ(p
κ1 , . . . , pκn−1) = λ(p) for p ∈ P ∩ (P, 2P ]} .

As the Ramanujan conjecture is open, we consider the exceptional set over each
prime:

E(t, p) = {
φ ∈ Ht : log max

1≤i≤n
|αφ,i(p)| > 1

}
1The decomposition is unique. Assume � = �1�′ = �2�′′ and m = m1m′ = m2m′′ are two

such decomposition. Every positive integer decomposes uniquely into a product of a squarefree
integer and a squarefull integer. From (�1m1)(�′m′) = (�2m2)(�′′m′′), we get: (∗) �1m1 = �2m2

and �′m′ = �′′m′′. As �1m1 is squarefree, we have (�1,m1) = 1; with (�1m1, �′m′) = 1, we infer
(�1,m) = 1. So (�1,m2) = 1, and (�2,m1) = 1 by symmetry. By (∗), �1 = �2 and m1 = m2.
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whose size is under control. Indeed, analogously to Sarnak’s bound for the GL(2)
Maass forms, we have |E(t, p)| 
 td−c0/ log p, where c0 > 0 is a constant, cf. Theo-
rem 7.3 in [7]. Hence ∣∣∣ ⋃

p∈PP

E(t, p)
∣∣∣ 
 td−c′/ logP

for some constant c′. Set

E∗(t;P ) = E(t;P ) \
⋃

p∈PP

E(t, p).

It remains to prove that

E∗(t;P ) 
δ,κ,P td e−Clog t/ log2 t

for all t > T0, where T0 = T0(δ, κ,P) is a sufficiently large number. We may
assume

(4.1) |λ(p)| < e‖κ‖(1 + |κ|)n2−n

for all P ≤ p ≤ 2P ; otherwise the set E(t;P ) is empty by (2.2). Suppose j ∈ N is
chosen such that

j ≤ P

40 logP
·(4.2)

We apply Theorem 1.1 with

(4.3) bp =

{
λ(p) if p ∈ PP ,

0 otherwise.

Since λ(p)Aφ(p
κ1 , . . . , pκn−1) = |Aφ(p

κ1 , . . . , pκn−1)|2 for φ ∈ E∗(t;P ), it follows
that

∑
φ∈E∗(t;P )

∣∣∣ ∑
p∈PP

|Aφ(p
κ1 , . . . , pκn−1)|2

p

∣∣∣2j ≤ ∑
φ∈Ht

∣∣∣ ∑
P<p≤2P

bp
Aφ(p

κ1 , . . . , pκn−1)

p

∣∣∣2j


 td
( (B1Cκ)

2j

P logP

)j

+ td−1/2
(B1CκQ

L‖κ‖

logP

)2j

,(4.4)

where B1 = e‖κ‖(1 + |κ|)n2−n and Q = 2P , in view of (4.1).

The size of |Aφ(p
κ1 , . . . , pκn−1)|2 is about 1 on average. To see it, we firstly

deduce from (1.2) and (2.3) that

|Aφ(p
κ1 , . . . , pκn−1)|2 = Aφ(p

κ1 , . . . , pκn−1)Aφ(p
κn−1 , . . . , pκ1)

= 1 +
∑
ξ �=0

‖ξ‖≤n|κ|

dξκκι Aφ(p
ξ1 , . . . , pξn−1)(4.5)

where κι = (κn−1, . . . , κ1). (Then ‖κι‖ = n|κ| − ‖κ‖.)
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Secondly, we exploit the oscillation among Aφ(p
ξ1 , . . . , pξn−1) by Theorem 1.1

(again). For ξ = (ξ1, . . . , ξn−1) with 1 ≤ ‖ξ‖ ≤ n|κ| = |nκ|, we define

Eξ(t;P ) =

{
φ ∈ Ht :

∣∣∣∣ ∑
P<p≤2P

p∈P

Aφ(p
ξ1 , . . . , pξn−1)

p

∣∣∣∣ ≥ Δ′

logP

}
,

where Δ′ := Δ/(2cκcκι) < Δ/2. Taking bp = 1 if p ∈ PP or 0 otherwise, we get
from Theorem 1.1 with Cξ ≤ Cnκ that

|Eξ(t;P )| 
 td
(C2

nκ j logP

Δ′2P

)j

+ td−1/2
(Cnκ Q

L‖ξ‖

Δ′
)2j

.(4.6)

For φ ∈ E∗(t;P )\⋃ξ �=0,‖ξ‖≤n|κ| E
ξ(t;P ), the inner sum (over p) in (4.4) is, by (4.5),

≥
∑

P<p≤2P
p∈P

1

p
−

∑
ξ �=0

‖ξ‖≤n|κ|

dξκκι

∣∣∣∣ ∑
P<p≤2P

p∈P

Aφ(p
ξ1 , . . . , pξn−1)

p

∣∣∣∣ ≥ Δ

2 logP
·(4.7)

Here we have applied that cκcκιΔ′ ≤ Δ/2 and∑
ξ �=0

‖ξ‖≤n|κ|

dξκκι ≤
∑

‖ξ‖≤n|κ|
(dξκκι)2 ≤ cκ cκι(4.8)

by (2.6).
Applying the lower bound (4.7) to the left-hand side of (4.4), we thus infer( Δ

2 logP

)2j∣∣∣E∗(t;P )\
⋃

ξ �=0,‖ξ‖≤n|κ|
Eξ(t;P )

∣∣∣

 td

( (B1Cκ)
2j

P logP

)j

+ td−1/2
(B1CκQ

L‖κ‖

logP

)2j

and, together with (4.6),

|E∗(t;P )| 
 td
( (B1Cnκ)

2j logP

Δ′2P

)j

+ td−1/2
(B1CnκQ

L‖κ‖

Δ′
)2j

.(4.9)

Recall δ log t ≤ P ≤ (log t)10. Take

j =
⌈
Δ∗ log t

logP

⌉
, with Δ∗ = min

( δ

40
,

δΔ′2

(2B1Cnκ)2
,

1

8L‖κ‖
)
.

Thus (4.2) is valid and the term inside the first bracket of (4.9) is bounded
by 1/4. Let T0 be large enough so that 1 < j < δ(log t)/(log2 t) and the second
term in the right-side of (4.9) is less than td−1/6 whenever t > T0. Then we
conclude that

|E∗(t;P )| 
 td e−Clog t/ log2 t

for some constant C > 0 depending on δ, κ and P. The proof of Theorem 1.2 is
complete.
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5. Proof of Theorem 1.5

The method of proof is the same as Theorem 1.2, starting with the set

F (t;P ) =
{
φ ∈ Ht : εp(Aφ(p

κ1 , . . . , pκn−1) +Aφ(p
κn−1 , . . . , pκ1)) > 0 for p ∈ PP

}
.

The task is to evaluate

F ∗(t;P ) = F (t;P ) \
⋃

p∈PP

E(t, p).

Using the positivity of εp
(
Aφ(p

κ1 , . . . , pκn−1)+Aφ(p
κn−1 , . . . , pκ1)

)
for φ∈F ∗(t;P ),

we have

|Aφ(p
κ1 , . . . , pκn−1) +Aφ(p

κn−1 , . . . , pκ1)|2

≤ 2e‖κ‖(1 + |κ|)n2−nεp
(
Aφ(p

κ1 , . . . , pκn−1) +Aφ(p
κn−1 , . . . , pκ1)

)
.

by (2.2), and the analogue of (4.5) follows from (2.3) and (2.4):

|Aφ(p
κ1 , . . . , pκn−1) +Aφ(p

κn−1 , . . . , pκ1)|2
= 2Aφ(p

κ1 , . . . , pκn−1)Aφ(p
κn−1 , . . . , pκ1)

+Aφ(p
κ1 , . . . , pκn−1)2 +Aφ(p

κn−1 , . . . , pκ1)2

= 2(1 + δκ,κι) +
∑
ξ �=0

‖ξ‖≤2n|κ|

(dξκκ + 2dξκκι + dξκικι)Aφ(p
ξ1 , . . . , pξn−1)

where δκ,κι if κ = κι or 0 otherwise, and κι = (κn−1, . . . , κ1).

6. Proof of Theorem 1.7

Let ε ∈ (0, 10−10] be fixed. We need a short Euler product approximation for a
bulk of L(1, φ)’s.

Proposition 6.1. There are a constant c′ > 0 and a subset E1(z) of Ht such that

L(1, φ) =
{
1 +O

( 1

log2 t

)} ∏
p≤z

n∏
i=1

(
1− αφ,i(p)

p

)−1

uniformly for ε log t ≤ z ≤ (log t)10 and all Maass forms φ ∈ Ht \E1(z), where the
implied constant in the O-term is absolute and

|E1(z)| = Oε

(
td exp

(
− c′

log t

(log2 t)(log3 t)(log4 t)

))
.

Proof. We follow the same approach as in the proof of Proposition 8.1 in [8]. A
crucial difference is without the Ramanujan bound now, and thus we exclude the
forms outside the set

Kt = Kt(η) :=
{
φ ∈ Ht : log max

1≤i≤n
|αφ,i(p)| ≤ 1/(log3 t)(log4 t), ∀p ≤ (log t)1/η

}
,
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where η > 0 is any number. The size of the exceptional set, i.e., H−
t = Ht\Kt, is

small:

(6.1) H−
t 
 td exp

(
− c

η log t

(log2 t)(log3 t)(log4 t)

)

for some constant c > 0, by Theorem 7.3 in [7] (see also (6.1) in [7]). We work
on Kt with the argument in [8] to complete the proof. �

Now we prove Theorem 1.7. For φ ∈ Ht\E1(z), we have

|L(1, φ)| ≤
{
1 +O

( 1

log2 t

)}∏
p≤z

(
1− α′

p

)−n

≤
{
1 +O

( 1

log2 t

)}
(eγ log z)α

′n

≤ {
eγ
(
(eγ(1−1/α′) log z)α

′
+ C0(log2 t)

α′−1
)}n

,

where C0 is an absolute constant and α′ = exp(1/(log3 t)(log4 t)). Taking

z = ee
−γ(1−1/α′)(log2 t+r−C0(log2 t)α

′−1)1/α
′

= e(1+O((log4 t)−1)(log2 t+r−C0(log2 t)α
′−1),

the proof is complete for F+
t . The case of F−

t is treated in the same fashion.
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